SOLID-PHASE SYNTHESIS OF OLIGODEOXYRIBONUCLEOTIDES USING THE BIS (TRIMETHYLSILYL) PEROXIDE OXIDATION OF PHOSPHITES ⁵

Y. Hayakawa,* M. Uchiyama,[†] and R. Noyori[†]* Chemical Instrument Center and [†]Department of Chemistry, Nagoya University, Chikusa, Nagoya 464, Japan

Summary : The trimethylsilyl triflate-catalyzed bis (trimethylsilyl) peroxide oxidation of phosphites has been successfully applied to the solid-phase synthesis of d (AAGATC).

The bis (trimethylsilyl) peroxide oxidation of phosphites,¹ accomplishable under nonaqueous conditions, possesses substantial advantage in the solid-phase oligonucleotide synthesis over the conventional aqueous iodine oxidation² which requires incidental drying steps. Here we demonstrate its high utility by synthesis of a hexanucleoside pentaphosphate, d (AAGATC) (8).

The controlled pore glass (CPG) -bound cytidine nucleoside 1 was elongated to 6 by repeating the reaction cycle shown in Table I. In the first phosphoramidite condensation, the steps 1 to 4 were of course unnecessary. Each coupling reaction sequence was effected in the average yield of 94%, determined by the colorimetric method of the released DMTr function. Thus the protected hexamer 6 was obtained in 72% overall yield from 1. The polymer-supported product 6 was then treated with a 1:1:2 mixture of thiophenol, triethylamine, and dioxane (25 °C, 30 min), followed by conc ammonia (25 °C, 2 h) to give the partially protected hexamer 7. The ³¹P-NMR spectrum of crude 7 showed no signals due to the trivalent phosphorus, indicating the quantitative oxidation. Finally 7 was converted to d (AAGATC) (8) through deacylation by conc ammonia (55 °C, 6 h) and subsequent detritylation by 80% acetic acid (25 °C, 1 h). The structure of 8, a part of the probe for chum salmon prolactin.³ was confirmed after conversion of it to the ³²P-labeled 5'-monophosphate 9⁴ by comparison of behavior in polyacrylamide-gel electrophoresis (PAGE) with that of the authentic sample.

Acknowledgments. We appreciate Nippon Zeon Co., Biological Science Institute, for generous gift of the compounds 1 to 5 and structure determination of the product 8.

[§] This paper is dedicated to Professor Morio Ikehara on the occasion of his retirement from Osaka University in March, 1986.

Table I. Reaction Sequence of the Solid-Phase Synthesis.

step ^a	operation	reagent (equiv)	volume/mL	time/min	repetition
1	detritylation	0.2 <i>M</i> CHCl ₂ COOH/CH ₂ Cl ₂	2	1	3
2	washing	CH ₂ Cl ₂	2		3
3	washing	1% pyridine/THF	2		2
4	washing	CH ₃ CN	2		3
5	coupling	nucleoside phosphoramidite	1	10	1
		2, 3, 4, or 5 (15) /CH ₃ CN			
		1H-tetrazole (38) /CH ₃ CN	1.25		
6	washing	CH₃CN	2		1
7	capping	$0.5 M \text{ DMAP}^{b}/\text{THF}$	1	3	1
		1 M Ac ₂ O-2, 6-lutidine/THF	1		
8	washing	1% pyridine/THF	2		1
9	oxidation	TMSOOTMS (20) / (C ₂ H ₅) $_3$ N (1) /CH ₂ Cl ₂	1	2	1
		TMSOTf (1) /CH ₂ Cl ₂	1		
10	washing	CH ₂ Cl ₂	2		3

^{*a*} The steps 4 to 9 were performed under argon atmosphere. ^{*b*} 4-Dimethylaminopyridine.

REFERENCES AND NOTES

- 1. Y. Hayakawa, M. Uchiyama, and R. Noyori, the preceding paper.
- 2. M. A. Dorman, S. A. Noble, L. J. McBride, and M. H. Caruthers, *Tetrahedron*, 40, 95 (1984), and references cited therein.
- 3. H. Kawauchi, K. Abe, A. Takahashi, T. Hirano, S. Hasegawa, N. Naito, and Y. Nakai, *Gen. Comp. Endocr.*, 49, 446 (1983).
- The compound 9 was prepared by the standard method, namely, the polynucleotide kinase-assisted reaction of 8 and [γ-³²P]-ATP: see, M. Takanami, J. Mol. Biol., 23, 135 (1967); R. Silber, V. G. Malathi, and J. Hurwitz, Proc. Nat. Acad. Sci. U. S., 69, 3009 (1972).

(Received in Japan 31 May 1986)